Search results for "Heart valve tissue engineering"

showing 2 items of 2 documents

Heart valve tissue engineering: how far is the bedside from the bench?

2015

Heart disease, including valve pathologies, is the leading cause of death worldwide. Despite the progress made thanks to improving transplantation techniques, a perfect valve substitute has not yet been developed: once a diseased valve is replaced with current technologies, the newly implanted valve still needs to be changed some time in the future. This situation is particularly dramatic in the case of children and young adults, because of the necessity of valve growth during the patient's life. Our review focuses on the current status of heart valve (HV) therapy and the challenges that must be solved in the development of new approaches based on tissue engineering. Scientists and physicia…

Aortic valveHeart diseaseSwine030204 cardiovascular system & hematology0302 clinical medicineHeart valve tissue engineeringHyaluronic AcidChildProsthetic valve0303 health sciencesMARROW-DERIVED CELLSTissue ScaffoldsFetal BloodHeart Valves3. Good healthmedicine.anatomical_structureHeart Valve ProsthesisCardiologyMolecular MedicineCollagenmedicine.medical_specialtyPULMONARY VALVEBONE-MARROWInduced Pluripotent Stem CellsVENTRICULAR OUTFLOW TRACTMESENCHYMAL STEM-CELLS03 medical and health sciencesTissue scaffoldsInternal medicineEXTRACELLULAR-MATRIXmedicineAnimalsHumansHeart valveIntensive care medicineENDOTHELIAL PROGENITOR CELLSMolecular Biology030304 developmental biologyBioprosthesisAORTIC-VALVEFibrinSheepTissue Engineeringbusiness.industryEndothelial Cellsmedicine.diseaseTransplantationPulmonary valveUMBILICAL-CORD BLOOD1182 Biochemistry cell and molecular biologybusinessHUMAN AMNIOTIC-FLUIDExpert Reviews in Molecular Medicine
researchProduct

Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering

2012

Biodegradable thermoplastic elastomers are attractive for application in cardiovascular tissue construct development due to their amenability to a wide range of physical property tuning. For heart valve leaflets, while low flexural stiffness is a key design feature, control of this parameter has been largely neglected in the scaffold literature where electrospinning is being utilized. This study evaluated the effect of processing variables and secondary fiber populations on the microstructure, tensile and bending mechanics of electrospun biodegradable polyurethane scaffolds for heart valve tissue engineering. Scaffolds were fabricated from poly(ester urethane) urea (PEUU) and the deposition…

ScaffoldMaterials scienceMechanical characterizationPolyestersBiomedical EngineeringBiochemistryArticleBiomaterialsTissue engineeringBending moduluUltimate tensile strengthMaterials TestingHumansComposite materialHeart valve tissue engineeringMolecular BiologyTissue EngineeringTissue ScaffoldsElectrospinningFlexural modulusStructural analysitechnology industry and agricultureFlexural rigidityGeneral MedicineElectrospinningElasticityPolyesterBending stiffnessHeart Valve ProsthesisBiotechnology
researchProduct